An upper primary and lower secondary STEM-focused resource that gives young learners the opportunity to explore how engineering and science work together in the healthcare service.

Pupils work collaboratively to develop their curiosity and creativity through a series of fun and engaging activities.
What is light?

Time to calculate

Light travels at 300,000 km (300 thousand kilometres) per second and the distance between the earth and the sun is 149,000,000 km (149 million kilometres).

- How many minutes does it take for light to reach us from the sun. **Approximately eight minutes**
- Explain why you think it takes this amount of time. You can write your ‘working out’ as an equation. 300,000 km per second x 60 (18,000,000 km per minute) = 18,000,000 km
Light travels 18,000,000 km in one minute.
149,000,000 km (distance from the sun) ÷ 18,000,000 km per minute ≈ 8 minutes

Teacher Tip: speed = distance/time so time = distance/speed

The power of 10

All wavelengths are measured by the power of 10. Look at the chart below, can you fill in the gaps?

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Number</th>
<th>Power</th>
<th>Words</th>
<th>Radiation type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 × 10 × 10 × 10 × 10</td>
<td>100,000</td>
<td>10^5</td>
<td>Hundred thousand</td>
<td></td>
</tr>
<tr>
<td>10 × 10 × 10 × 10</td>
<td>10,000</td>
<td>10^4</td>
<td>Ten thousand</td>
<td>Radio</td>
</tr>
<tr>
<td>10 × 10 × 10</td>
<td>1,000</td>
<td>10^3</td>
<td>Thousand</td>
<td></td>
</tr>
<tr>
<td>10 × 10</td>
<td>100</td>
<td>10^2</td>
<td>One hundred</td>
<td></td>
</tr>
<tr>
<td>10 × 1</td>
<td>10</td>
<td>10^1</td>
<td>Ten</td>
<td></td>
</tr>
<tr>
<td>10 × 0.1</td>
<td>1</td>
<td>10^0</td>
<td>One</td>
<td></td>
</tr>
<tr>
<td>1 × 0.1</td>
<td>0.1</td>
<td>10^{-1}</td>
<td>One tenth</td>
<td></td>
</tr>
<tr>
<td>0.1 × 0.1</td>
<td>0.01</td>
<td>10^{-2}</td>
<td>One hundredth</td>
<td>Microwave</td>
</tr>
<tr>
<td>0.1 × 0.1 × 0.1</td>
<td>0.001</td>
<td>10^{-3}</td>
<td>One thousandth</td>
<td></td>
</tr>
<tr>
<td>0.1 × 0.1 × 0.1 × 0.1</td>
<td>0.0001</td>
<td>10^{-4}</td>
<td>Ten thousandth</td>
<td></td>
</tr>
<tr>
<td>0.1 × 0.1 × 0.1 × 0.1 × 0.1</td>
<td>0.00001</td>
<td>10^{-5}</td>
<td>Hundred thousandth</td>
<td>Infrared</td>
</tr>
</tbody>
</table>

Time to think

The Sun is just one source of light. What other light sources can you think of?

Stars, light bulbs, mobile phones, televisions, lamp posts, lasers, bioluminescence.
Using the information from the chart you completed above, show the following:

- What is the approximate length of a radio wave in metres? **1,000 m**
- What is the approximate length of a microwave in metres? **0.01 m**
- What is the approximate length of an infrared wave in metres? **0.000001 m**

Stretch and challenge

- What is the approximate length of a wave in the 'visible' spectrum? **0.0000005 m**
- How much longer is a microwave wavelength compared to an infrared wave? \(10^{-2} ÷ 10^{-6} = 10,000\) times longer

Scale of the universe

<table>
<thead>
<tr>
<th>Object</th>
<th>Size</th>
<th>The Power of 10</th>
<th>Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>1.7 metres</td>
<td>(1.7 \times 10^0) metres</td>
<td>FM Radio wave</td>
</tr>
<tr>
<td>Apollo Lunar Buggy</td>
<td>9 metres</td>
<td>(9 \times 10^0) metres</td>
<td>FM Radio wave</td>
</tr>
<tr>
<td>Mount Everest</td>
<td>8.8 kilometres</td>
<td>(8.8 \times 10^3) metres</td>
<td>AM Radio wave</td>
</tr>
<tr>
<td>Grain of rice</td>
<td>5 millimetres</td>
<td>(5 \times 10^{-3}) metres</td>
<td>Microwave</td>
</tr>
<tr>
<td>Y-chromosome</td>
<td>1.5 micrometres</td>
<td>(1.5 \times 10^{-6}) metres</td>
<td>Red Light Wave</td>
</tr>
</tbody>
</table>

Nano-challenge:

How many times smaller is the Apollo Lunar buggy than Mount Everest?
- Buggy is 9 metres and Everest is 8.8 kilometres (8,800 metres)
- the buggy is approximately 1,000 times smaller than Everest

Find the smallest creature visible to the naked eye. Dust mite

Find the smallest thing visible to an optical microscope. Virus

The visible light spectrum

- How many nanometres (nm) is the slice of orange?
 - Write this down in words? 100 million
- How long is the grain of salt in centimetres (cm)? 0.1 cm

<table>
<thead>
<tr>
<th>Pencil case object</th>
<th>Measurement (cm)</th>
<th>Measurement (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pencil</td>
<td>17</td>
<td>170,000,000</td>
</tr>
<tr>
<td>Full stop made by pencil</td>
<td>0.1</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Rubber</td>
<td>4</td>
<td>40,000,000</td>
</tr>
<tr>
<td>Sharpener</td>
<td>3.5</td>
<td>35,000,000</td>
</tr>
</tbody>
</table>
Behaviour of light

Absorbing the light challenge
Why do you think black objects radiate more heat? They absorb more energy, thus emitting more heat.

Absorption spectra
What do you notice about the green light the eye can see and the line on the absorption spectra graph? Green light has the lowest absorption.

Time to experiment
When we add blue dye to the water in the glass, the behaviour we are investigating is absorption. The blue dye absorbs all the other colours and only allows blue light to pass through.

When we add the milk to the water, the behaviour we are investigating is scattering. Fat globules are suspended in the milk liquid and scatter light in different directions. This is why you can’t see through milk. So when we shine the torch into the milk, some of the light will be scattered back to you.

Time to calculate
Match the objects (right) to the correct absorption spectra graph.
Light and the body

Role of the radiologist
Diagram A - Foot with metal plates
Diagram B - Hand with broken finger
Diagram C - Metal filling in a tooth
Diagram D - Swallowed a needle

Transmission through the body
Shine a torch onto your fingers. What do you notice?
Your hand lights up a red colour as all the other colours in the spectrum are absorbed and only red light can travel through our body.

Time to think
Look at the image to see which colours of light travel through the body and which don't. What do you think will happen if you shine different coloured light through your fingers?

Why do some colours travel through the body?
The body is made up of lots of components including water, blood, fat, proteins and collagen. They have different colours and therefore different absorption spectra.

Water makes up around 60% of the body and it is transparent, because it transmits visible light.

The optical window (which is between 600 and 1,000nm) allows a range of colours to travel through the body. This region includes red, which is why our hands glow red when white light shines through it. It also includes infra-red, which is invisible to us but can be detected with cameras.
Light and the brain

Absorption Spectra

Identify the green light (550 nm) dotted line. Which statement is correct?

- HbO₂ absorbs more green light than Hb
- Hb absorbs more green light than HbO₂
- Both HbO₂ and Hb absorb the same amount of green light

Now identify the purple light (400 nm) line. Which statement is correct?

- HbO₂ absorbs more purple light than Hb
- Hb absorbs more purple light than HbO₂
- Both HbO₂ and Hb absorb the same amount of purple light

Now look at point A and B on the graph. Which of these statements is correct?

- HbO₂ absorbs less red light than Hb
- Hb absorbs less red light than HbO₂
- Both HbO₂ and Hb absorb the same amount of purple light

Therefore, which blood type is redder in colour? HbO₂

Why is blood red? Blood does not absorb the red light of the spectrum

Time to investigate

Look at the colour of the blood in each syringe.

- Which one is filled with the least oxygenated blood? 3
- Which one is filled with the most oxygenated blood? 4
Using light to measure your oxygen levels

Time to calculate

- **Baby A** has an oxyhaemoglobin count of 45 units and a deoxyhemoglobin count of 5 units.
\[
\frac{45}{45 + 5} \times 100\% = 90\%
\]

- **Baby B** has an oxyhaemoglobin count of 36 units and a deoxyhaemoglobin count of 9 units.
\[
\frac{36}{36 + 9} \times 100\% = 80\%
\]

∴ Baby B is in more need of medical treatment

Finger on the pulse

What is the patient’s heart rate per minute?

60 beats per minute (bpm).
One wave in a cycle every second.
Royal Academy of Engineering

As the UK’s national academy for engineering and technology, we bring together the most successful and talented engineers from academia and business – our Fellows – to advance and promote excellence in engineering for the benefit of society.

We harness their experience and expertise to provide independent advice to government, to deliver programmes that help exceptional engineering researchers and innovators realise their potential, to engage the public with engineering and to provide leadership for the profession.

We have three strategic priorities:

- Make the UK the leading nation for engineering innovation and businesses
- Address the engineering skills and diversity challenge
- Position engineering at the heart of society

We bring together engineers, policymakers, entrepreneurs, business leaders, academics, educators and the public in pursuit of these goals.

Engineering is a global profession, so we work with partners across the world to advance engineering’s contribution to society on an international, as well as a national scale.